Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

lt(0, s(x)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
fibo(0) → fib(0)
fibo(s(0)) → fib(s(0))
fibo(s(s(x))) → sum(fibo(s(x)), fibo(x))
fib(0) → s(0)
fib(s(0)) → s(0)
fib(s(s(x))) → if(true, 0, s(s(x)), 0, 0)
if(true, c, s(s(x)), a, b) → if(lt(s(c), s(s(x))), s(c), s(s(x)), b, c)
if(false, c, s(s(x)), a, b) → sum(fibo(a), fibo(b))
sum(x, 0) → x
sum(x, s(y)) → s(sum(x, y))

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

lt(0, s(x)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
fibo(0) → fib(0)
fibo(s(0)) → fib(s(0))
fibo(s(s(x))) → sum(fibo(s(x)), fibo(x))
fib(0) → s(0)
fib(s(0)) → s(0)
fib(s(s(x))) → if(true, 0, s(s(x)), 0, 0)
if(true, c, s(s(x)), a, b) → if(lt(s(c), s(s(x))), s(c), s(s(x)), b, c)
if(false, c, s(s(x)), a, b) → sum(fibo(a), fibo(b))
sum(x, 0) → x
sum(x, s(y)) → s(sum(x, y))

Q is empty.

The TRS is overlay and locally confluent. By [19] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

lt(0, s(x)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
fibo(0) → fib(0)
fibo(s(0)) → fib(s(0))
fibo(s(s(x))) → sum(fibo(s(x)), fibo(x))
fib(0) → s(0)
fib(s(0)) → s(0)
fib(s(s(x))) → if(true, 0, s(s(x)), 0, 0)
if(true, c, s(s(x)), a, b) → if(lt(s(c), s(s(x))), s(c), s(s(x)), b, c)
if(false, c, s(s(x)), a, b) → sum(fibo(a), fibo(b))
sum(x, 0) → x
sum(x, s(y)) → s(sum(x, y))

The set Q consists of the following terms:

lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
fibo(0)
fibo(s(0))
fibo(s(s(x0)))
fib(0)
fib(s(0))
fib(s(s(x0)))
if(true, x0, s(s(x1)), x2, x3)
if(false, x0, s(s(x1)), x2, x3)
sum(x0, 0)
sum(x0, s(x1))


Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

FIBO(s(s(x))) → FIBO(x)
FIBO(s(0)) → FIB(s(0))
IF(true, c, s(s(x)), a, b) → IF(lt(s(c), s(s(x))), s(c), s(s(x)), b, c)
FIBO(0) → FIB(0)
FIBO(s(s(x))) → FIBO(s(x))
IF(false, c, s(s(x)), a, b) → SUM(fibo(a), fibo(b))
LT(s(x), s(y)) → LT(x, y)
FIB(s(s(x))) → IF(true, 0, s(s(x)), 0, 0)
FIBO(s(s(x))) → SUM(fibo(s(x)), fibo(x))
IF(false, c, s(s(x)), a, b) → FIBO(b)
SUM(x, s(y)) → SUM(x, y)
IF(false, c, s(s(x)), a, b) → FIBO(a)
IF(true, c, s(s(x)), a, b) → LT(s(c), s(s(x)))

The TRS R consists of the following rules:

lt(0, s(x)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
fibo(0) → fib(0)
fibo(s(0)) → fib(s(0))
fibo(s(s(x))) → sum(fibo(s(x)), fibo(x))
fib(0) → s(0)
fib(s(0)) → s(0)
fib(s(s(x))) → if(true, 0, s(s(x)), 0, 0)
if(true, c, s(s(x)), a, b) → if(lt(s(c), s(s(x))), s(c), s(s(x)), b, c)
if(false, c, s(s(x)), a, b) → sum(fibo(a), fibo(b))
sum(x, 0) → x
sum(x, s(y)) → s(sum(x, y))

The set Q consists of the following terms:

lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
fibo(0)
fibo(s(0))
fibo(s(s(x0)))
fib(0)
fib(s(0))
fib(s(s(x0)))
if(true, x0, s(s(x1)), x2, x3)
if(false, x0, s(s(x1)), x2, x3)
sum(x0, 0)
sum(x0, s(x1))

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

FIBO(s(s(x))) → FIBO(x)
FIBO(s(0)) → FIB(s(0))
IF(true, c, s(s(x)), a, b) → IF(lt(s(c), s(s(x))), s(c), s(s(x)), b, c)
FIBO(0) → FIB(0)
FIBO(s(s(x))) → FIBO(s(x))
IF(false, c, s(s(x)), a, b) → SUM(fibo(a), fibo(b))
LT(s(x), s(y)) → LT(x, y)
FIB(s(s(x))) → IF(true, 0, s(s(x)), 0, 0)
FIBO(s(s(x))) → SUM(fibo(s(x)), fibo(x))
IF(false, c, s(s(x)), a, b) → FIBO(b)
SUM(x, s(y)) → SUM(x, y)
IF(false, c, s(s(x)), a, b) → FIBO(a)
IF(true, c, s(s(x)), a, b) → LT(s(c), s(s(x)))

The TRS R consists of the following rules:

lt(0, s(x)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
fibo(0) → fib(0)
fibo(s(0)) → fib(s(0))
fibo(s(s(x))) → sum(fibo(s(x)), fibo(x))
fib(0) → s(0)
fib(s(0)) → s(0)
fib(s(s(x))) → if(true, 0, s(s(x)), 0, 0)
if(true, c, s(s(x)), a, b) → if(lt(s(c), s(s(x))), s(c), s(s(x)), b, c)
if(false, c, s(s(x)), a, b) → sum(fibo(a), fibo(b))
sum(x, 0) → x
sum(x, s(y)) → s(sum(x, y))

The set Q consists of the following terms:

lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
fibo(0)
fibo(s(0))
fibo(s(s(x0)))
fib(0)
fib(s(0))
fib(s(s(x0)))
if(true, x0, s(s(x1)), x2, x3)
if(false, x0, s(s(x1)), x2, x3)
sum(x0, 0)
sum(x0, s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 4 SCCs with 8 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SUM(x, s(y)) → SUM(x, y)

The TRS R consists of the following rules:

lt(0, s(x)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
fibo(0) → fib(0)
fibo(s(0)) → fib(s(0))
fibo(s(s(x))) → sum(fibo(s(x)), fibo(x))
fib(0) → s(0)
fib(s(0)) → s(0)
fib(s(s(x))) → if(true, 0, s(s(x)), 0, 0)
if(true, c, s(s(x)), a, b) → if(lt(s(c), s(s(x))), s(c), s(s(x)), b, c)
if(false, c, s(s(x)), a, b) → sum(fibo(a), fibo(b))
sum(x, 0) → x
sum(x, s(y)) → s(sum(x, y))

The set Q consists of the following terms:

lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
fibo(0)
fibo(s(0))
fibo(s(s(x0)))
fib(0)
fib(s(0))
fib(s(s(x0)))
if(true, x0, s(s(x1)), x2, x3)
if(false, x0, s(s(x1)), x2, x3)
sum(x0, 0)
sum(x0, s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SUM(x, s(y)) → SUM(x, y)

R is empty.
The set Q consists of the following terms:

lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
fibo(0)
fibo(s(0))
fibo(s(s(x0)))
fib(0)
fib(s(0))
fib(s(s(x0)))
if(true, x0, s(s(x1)), x2, x3)
if(false, x0, s(s(x1)), x2, x3)
sum(x0, 0)
sum(x0, s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
fibo(0)
fibo(s(0))
fibo(s(s(x0)))
fib(0)
fib(s(0))
fib(s(s(x0)))
if(true, x0, s(s(x1)), x2, x3)
if(false, x0, s(s(x1)), x2, x3)
sum(x0, 0)
sum(x0, s(x1))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SUM(x, s(y)) → SUM(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FIBO(s(s(x))) → FIBO(x)
FIBO(s(s(x))) → FIBO(s(x))

The TRS R consists of the following rules:

lt(0, s(x)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
fibo(0) → fib(0)
fibo(s(0)) → fib(s(0))
fibo(s(s(x))) → sum(fibo(s(x)), fibo(x))
fib(0) → s(0)
fib(s(0)) → s(0)
fib(s(s(x))) → if(true, 0, s(s(x)), 0, 0)
if(true, c, s(s(x)), a, b) → if(lt(s(c), s(s(x))), s(c), s(s(x)), b, c)
if(false, c, s(s(x)), a, b) → sum(fibo(a), fibo(b))
sum(x, 0) → x
sum(x, s(y)) → s(sum(x, y))

The set Q consists of the following terms:

lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
fibo(0)
fibo(s(0))
fibo(s(s(x0)))
fib(0)
fib(s(0))
fib(s(s(x0)))
if(true, x0, s(s(x1)), x2, x3)
if(false, x0, s(s(x1)), x2, x3)
sum(x0, 0)
sum(x0, s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FIBO(s(s(x))) → FIBO(x)
FIBO(s(s(x))) → FIBO(s(x))

R is empty.
The set Q consists of the following terms:

lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
fibo(0)
fibo(s(0))
fibo(s(s(x0)))
fib(0)
fib(s(0))
fib(s(s(x0)))
if(true, x0, s(s(x1)), x2, x3)
if(false, x0, s(s(x1)), x2, x3)
sum(x0, 0)
sum(x0, s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
fibo(0)
fibo(s(0))
fibo(s(s(x0)))
fib(0)
fib(s(0))
fib(s(s(x0)))
if(true, x0, s(s(x1)), x2, x3)
if(false, x0, s(s(x1)), x2, x3)
sum(x0, 0)
sum(x0, s(x1))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FIBO(s(s(x))) → FIBO(x)
FIBO(s(s(x))) → FIBO(s(x))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LT(s(x), s(y)) → LT(x, y)

The TRS R consists of the following rules:

lt(0, s(x)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
fibo(0) → fib(0)
fibo(s(0)) → fib(s(0))
fibo(s(s(x))) → sum(fibo(s(x)), fibo(x))
fib(0) → s(0)
fib(s(0)) → s(0)
fib(s(s(x))) → if(true, 0, s(s(x)), 0, 0)
if(true, c, s(s(x)), a, b) → if(lt(s(c), s(s(x))), s(c), s(s(x)), b, c)
if(false, c, s(s(x)), a, b) → sum(fibo(a), fibo(b))
sum(x, 0) → x
sum(x, s(y)) → s(sum(x, y))

The set Q consists of the following terms:

lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
fibo(0)
fibo(s(0))
fibo(s(s(x0)))
fib(0)
fib(s(0))
fib(s(s(x0)))
if(true, x0, s(s(x1)), x2, x3)
if(false, x0, s(s(x1)), x2, x3)
sum(x0, 0)
sum(x0, s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LT(s(x), s(y)) → LT(x, y)

R is empty.
The set Q consists of the following terms:

lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
fibo(0)
fibo(s(0))
fibo(s(s(x0)))
fib(0)
fib(s(0))
fib(s(s(x0)))
if(true, x0, s(s(x1)), x2, x3)
if(false, x0, s(s(x1)), x2, x3)
sum(x0, 0)
sum(x0, s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
fibo(0)
fibo(s(0))
fibo(s(s(x0)))
fib(0)
fib(s(0))
fib(s(s(x0)))
if(true, x0, s(s(x1)), x2, x3)
if(false, x0, s(s(x1)), x2, x3)
sum(x0, 0)
sum(x0, s(x1))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LT(s(x), s(y)) → LT(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

IF(true, c, s(s(x)), a, b) → IF(lt(s(c), s(s(x))), s(c), s(s(x)), b, c)

The TRS R consists of the following rules:

lt(0, s(x)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
fibo(0) → fib(0)
fibo(s(0)) → fib(s(0))
fibo(s(s(x))) → sum(fibo(s(x)), fibo(x))
fib(0) → s(0)
fib(s(0)) → s(0)
fib(s(s(x))) → if(true, 0, s(s(x)), 0, 0)
if(true, c, s(s(x)), a, b) → if(lt(s(c), s(s(x))), s(c), s(s(x)), b, c)
if(false, c, s(s(x)), a, b) → sum(fibo(a), fibo(b))
sum(x, 0) → x
sum(x, s(y)) → s(sum(x, y))

The set Q consists of the following terms:

lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
fibo(0)
fibo(s(0))
fibo(s(s(x0)))
fib(0)
fib(s(0))
fib(s(s(x0)))
if(true, x0, s(s(x1)), x2, x3)
if(false, x0, s(s(x1)), x2, x3)
sum(x0, 0)
sum(x0, s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

IF(true, c, s(s(x)), a, b) → IF(lt(s(c), s(s(x))), s(c), s(s(x)), b, c)

The TRS R consists of the following rules:

lt(s(x), s(y)) → lt(x, y)
lt(0, s(x)) → true
lt(x, 0) → false

The set Q consists of the following terms:

lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
fibo(0)
fibo(s(0))
fibo(s(s(x0)))
fib(0)
fib(s(0))
fib(s(s(x0)))
if(true, x0, s(s(x1)), x2, x3)
if(false, x0, s(s(x1)), x2, x3)
sum(x0, 0)
sum(x0, s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

fibo(0)
fibo(s(0))
fibo(s(s(x0)))
fib(0)
fib(s(0))
fib(s(s(x0)))
if(true, x0, s(s(x1)), x2, x3)
if(false, x0, s(s(x1)), x2, x3)
sum(x0, 0)
sum(x0, s(x1))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

IF(true, c, s(s(x)), a, b) → IF(lt(s(c), s(s(x))), s(c), s(s(x)), b, c)

The TRS R consists of the following rules:

lt(s(x), s(y)) → lt(x, y)
lt(0, s(x)) → true
lt(x, 0) → false

The set Q consists of the following terms:

lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule IF(true, c, s(s(x)), a, b) → IF(lt(s(c), s(s(x))), s(c), s(s(x)), b, c) at position [0] we obtained the following new rules:

IF(true, c, s(s(x)), a, b) → IF(lt(c, s(x)), s(c), s(s(x)), b, c)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
QDP
                            ↳ Instantiation

Q DP problem:
The TRS P consists of the following rules:

IF(true, c, s(s(x)), a, b) → IF(lt(c, s(x)), s(c), s(s(x)), b, c)

The TRS R consists of the following rules:

lt(s(x), s(y)) → lt(x, y)
lt(0, s(x)) → true
lt(x, 0) → false

The set Q consists of the following terms:

lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule IF(true, c, s(s(x)), a, b) → IF(lt(c, s(x)), s(c), s(s(x)), b, c) we obtained the following new rules:

IF(true, s(z0), s(s(z1)), z3, z0) → IF(lt(s(z0), s(z1)), s(s(z0)), s(s(z1)), z0, s(z0))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Instantiation
QDP
                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

IF(true, s(z0), s(s(z1)), z3, z0) → IF(lt(s(z0), s(z1)), s(s(z0)), s(s(z1)), z0, s(z0))

The TRS R consists of the following rules:

lt(s(x), s(y)) → lt(x, y)
lt(0, s(x)) → true
lt(x, 0) → false

The set Q consists of the following terms:

lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule IF(true, s(z0), s(s(z1)), z3, z0) → IF(lt(s(z0), s(z1)), s(s(z0)), s(s(z1)), z0, s(z0)) at position [0] we obtained the following new rules:

IF(true, s(z0), s(s(z1)), z3, z0) → IF(lt(z0, z1), s(s(z0)), s(s(z1)), z0, s(z0))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Instantiation
                              ↳ QDP
                                ↳ Rewriting
QDP
                                    ↳ Instantiation

Q DP problem:
The TRS P consists of the following rules:

IF(true, s(z0), s(s(z1)), z3, z0) → IF(lt(z0, z1), s(s(z0)), s(s(z1)), z0, s(z0))

The TRS R consists of the following rules:

lt(s(x), s(y)) → lt(x, y)
lt(0, s(x)) → true
lt(x, 0) → false

The set Q consists of the following terms:

lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule IF(true, s(z0), s(s(z1)), z3, z0) → IF(lt(z0, z1), s(s(z0)), s(s(z1)), z0, s(z0)) we obtained the following new rules:

IF(true, s(s(z0)), s(s(z1)), z0, s(z0)) → IF(lt(s(z0), z1), s(s(s(z0))), s(s(z1)), s(z0), s(s(z0)))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Instantiation
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Instantiation
QDP
                                        ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

IF(true, s(s(z0)), s(s(z1)), z0, s(z0)) → IF(lt(s(z0), z1), s(s(s(z0))), s(s(z1)), s(z0), s(s(z0)))

The TRS R consists of the following rules:

lt(s(x), s(y)) → lt(x, y)
lt(0, s(x)) → true
lt(x, 0) → false

The set Q consists of the following terms:

lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The DP Problem is simplified using the Induction Calculus [18] with the following steps:
Note that final constraints are written in bold face.


For Pair IF(true, s(s(z0)), s(s(z1)), z0, s(z0)) → IF(lt(s(z0), z1), s(s(s(z0))), s(s(z1)), s(z0), s(s(z0))) the following chains were created:




To summarize, we get the following constraints P for the following pairs.



The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation [18]:

POL(0) = 0   
POL(IF(x1, x2, x3, x4, x5)) = -1 - x1 - x2 + x3 + x4 - x5   
POL(c) = -1   
POL(false) = 1   
POL(lt(x1, x2)) = 0   
POL(s(x1)) = 1 + x1   
POL(true) = 0   

The following pairs are in P>:

IF(true, s(s(z0)), s(s(z1)), z0, s(z0)) → IF(lt(s(z0), z1), s(s(s(z0))), s(s(z1)), s(z0), s(s(z0)))
The following pairs are in Pbound:

IF(true, s(s(z0)), s(s(z1)), z0, s(z0)) → IF(lt(s(z0), z1), s(s(s(z0))), s(s(z1)), s(z0), s(s(z0)))
The following rules are usable:

falselt(x, 0)
lt(x, y) → lt(s(x), s(y))
truelt(0, s(x))


↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Instantiation
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Instantiation
                                      ↳ QDP
                                        ↳ NonInfProof
QDP
                                            ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

lt(s(x), s(y)) → lt(x, y)
lt(0, s(x)) → true
lt(x, 0) → false

The set Q consists of the following terms:

lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.